MATH 579 Final Exam; 12/12/13

Please read the exam instructions.
Please indicate what work goes with which problem and put your name or initials on every sheet. Cross out work you do not wish graded; incorrect work can lower your grade, even compared with no work at all. Show all necessary work in your solutions; if you are unsure, show it. Simplify all numerical answers to be integers, if possible. You are welcome to use your book, notes, and calculators; if you use an earlier result be sure to cite it. You have 120 minutes. This exam is out of 60 points maximum.

Part I: Do all three problems.

For these three problems we call $n \in \mathbb{N}$ comfortable if it satisfies the following property: If prime p divides n, then p^{3} divides n.
For example, $1,8,16,27,216\left(2^{3} 3^{3}\right), 648\left(2^{3} 3^{4}\right)$ are each comfortable, while $2,4,6,24$ are not.

1. (5-10 points) How many comfortable divisors does 270,000 have?
2. (5-10 points) How many (positive) divisors of 60^{8} are neither comfortable nor square?
3. (5-10 points) Let n be comfortable, with prime decomposition $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$. Let $d(n)$ denote the number of (positive) divisors of n, and $c(n)$ denote the number of comfortable divisors of n. Prove that $c(n) \geq \frac{d(n)}{2^{k}}$, and characterize those n where equality holds.

Part II: Choose three of the following six problems.

4. (5-8 points) How many permutations $p \in S_{7}$ satisfy $p^{3}=1$?
5. (5-10 points) Calculate how many solutions there are to $a+b+c=101$ such that a, b, c are nonnegative integers and $a \leq 21$.
6. (5-10 points) For $n \in \mathbb{N}$, simplify $\binom{-\frac{5}{2}}{n}$ to an expression containing only factorials and exponentials.
7. (5-10 points) Consider the sequence given by $a_{0}=-1, a_{1}=2, a_{n}=2 a_{n-1}-a_{n-2}$ $(n \geq 2)$. Find a closed form for a_{n}.
8. (5-10 points) Consider the sequence given by $a_{0}=-1, a_{n}=n a_{n-1}+n!(n \geq 1)$. Find a closed form for a_{n}.
9. (5-12 points) Consider the sequence given by $a_{0}=1, a_{n+1}=2 \sum_{i=0}^{n} a_{i} a_{n-i}(n \geq 0)$. Find a closed form for a_{n}.

Extra credit: Predict your score on this exam, out of 60 . If close (within 2 points), you'll earn a bonus point. If exactly right, you'll earn two bonus points.

