MATH 579: Combinatorics

Homework 2 Solutions

1. Calculate $S(5,3)$ in two ways: with the formula involving binomial coefficients, and with the recurrence relation (and boundary conditions).
First method: $S(5,3)=\frac{1}{3!} \sum_{j=0}^{3}(-1)^{3-j}\binom{3}{j} j^{5}=\frac{1}{6}\left[-\binom{3}{0} 0^{5}+\binom{3}{1} 1^{5}-\binom{3}{2} 2^{5}+\binom{3}{3} 3^{5}\right]=\frac{1}{6}(-0+3-$ $96+243)=\frac{150}{6}=25$.
Second method: Since $S(n, 1)=S(n, n)=1$ for all $n \in \mathbb{N}$, we will just calculate the non-boundary values we will need: $S(3,2)=2 S(2,2)+S(2,1)=3 . S(4,2)=2 S(3,2)+S(3,1)=7 . S(4,3)=$ $3 S(3,3)+S(3,2)=6$. Finally, $S(5,3)=3 S(4,3)+S(4,2)=25$.
2. Explicitly find all partitions of $\{a, b, c, d, e\}$ into three nonempty parts.

We should have $S(5,3)=25$ of these. It is very helpful to write in some nice order, to not repeat. $a b c \cdot d \cdot e, a b d \cdot c \cdot e, a b e \cdot c \cdot d, a c d \cdot b \cdot e, a c e \cdot b \cdot d, a d e \cdot b \cdot c, b c d \cdot a \cdot e, b c e \cdot a \cdot d, b d e \cdot a \cdot c, c d e \cdot a \cdot b$, $a b \cdot c d \cdot e, a b \cdot c e \cdot d, a b \cdot d e \cdot c, a c \cdot b d \cdot e, a c \cdot b e \cdot d, a c \cdot d e \cdot b, a d \cdot b c \cdot e, a d \cdot b e \cdot c, a d \cdot c e \cdot b, a e \cdot b c \cdot d, a e \cdot$ $b d \cdot c, a e \cdot c d \cdot b, a \cdot b c \cdot d e, a \cdot b d \cdot c e, a \cdot b e \cdot c d$.
3. Explicitly find all lists of length four, drawn from [3], using each of $1,2,3$ at least once.

We should have $3!S(4,3)=36$ of these. Fortunately, there's a nice symmetry to exploit, as just one element is repeated in each list. There should be twelve that repeat 1. In lexicographic order, they are: $(1,1,2,3),(1,1,3,2),(1,2,1,3),(1,2,3,1),(1,3,1,2),(1,3,2,1),(2,1,1,3),(2,1,3,1)$, $(2,3,1,1),(3,1,1,2),(3,1,2,1),(3,2,1,1)$. We can now take these and swap 1 with 2 , to get the twelve that repeat $2:(2,2,1,3),(2,2,3,1),(2,1,2,3),(2,1,3,2),(2,3,2,1),(2,3,1,2),(1,2,2,3)$, $(1,2,3,2),(1,3,2,2),(3,2,2,1),(3,2,1,2),(3,1,2,2)$. We can also take our first twelve, and swap 1 with 3 , to get the twelve that repeat $3:(3,3,2,1),(3,3,1,2),(3,2,3,1),(3,2,1,3),(3,1,3,2),(3,1,2,3)$, $(2,3,3,1),(2,3,1,3),(2,1,3,3),(1,3,3,2),(1,3,2,3),(1,2,3,3)$. Of course, we could have just calculated all 36 in lexicographic order.
4. Explicitly find all partitions of $\{a, b, c, d\}$ into any number of parts.

There should be $B_{4}=15$ of these, corresponding to $S(4,1)+S(4,2)+S(4,3)+S(4,4)$. They are $a b c d, a b c \cdot d, a b d \cdot c, a c d \cdot b, b c d \cdot a, a b \cdot c d, a c \cdot b d, a d \cdot b c, a b \cdot c \cdot d, a c \cdot b \cdot d, a d \cdot b \cdot c, b c \cdot a \cdot d, b d \cdot a \cdot c, c d \cdot a \cdot b, a \cdot b \cdot c \cdot d$.
5. Explicitly find all lists of length three, drawn from $[n]$ for some $n \in \mathbb{N}$, using each of $1,2, \ldots, n$ at least once.
There should be $1!S(3,1)+2!S(3,2)+3!S(3,3)=13$ of these. For $n=1$ there is just $(1,1,1)$. For $n=$ 2 there are $(1,1,2),(1,2,1),(2,1,1),(2,2,1),(2,1,2),(1,2,2)$. For $n=3$ there are $(1,2,3),(1,3,2)$, $(2,1,3),(2,3,1),(3,1,2),(3,2,1)$. For $n \geq 4$ there are no such lists.
6. Determine the number of factorizations of 2310 into integers greater than 1. For example, 2310 and $2 \cdot 1155$ are two of these.
We factor $2310=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$. Each factorization is a partition of the set $\{2,3,5,7,11\}$. Hence there are $B_{5}=52$ of them.
7. Prove the boundary conditions $S(n, 1)=S(n, n)=1$, for all $n \in \mathbb{N}$.

The only partition of $[n]$ into one part is to put everything into that part. The only partition of $[n]$ into n parts is to put each element into its own part.
8. Prove the recurrence relation $S(n+1, k)=k S(n, k)+S(n, k-1)$, for $n \geq k \geq 1$.

We count partitions of $[n+1]$ into k parts in two ways. One way is just with $S(n+1, k)$. The other way is by considering $n+1$ separately. If it is in a part by itself, then the remaining $k-1$ parts form a partition of $[n]$. There are $S(n, k-1)$ such partitions. If instead $n+1$ is not alone, then removing it leaves a partition of $[n]$ into k parts. There are $S(n, k)$ such partitions, and k choices of which part to attach $n+1$ to. Hence there are $k S(n, k)$ partitions of $[n+1]$ into k parts where $n+1$ is not lonely. Adding, we get the desired result.
9. Prove that there are $n!S(k, n)$ lists of size k, drawn from $[n]$, using each of $1,2, \ldots n$ at least once.

We need a bijection between lists and partitions. Start with a list of size $k,\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, whose elements are drawn from $[n]$, using each of $1,2, \ldots, n$ at least once. We assume $k \geq n$ else the answer is 0 .

We put 1 into part a_{1}, we put 2 into part a_{2}, \ldots, and we put k into part a_{k}. There are potentially n parts, since the a_{i} are drawn from $[n]$. In fact, there are exactly n parts, since each of $1,2, \ldots, n$ are used at least once in the list. So, we have a function from lists of our type, to partitions of $[k]$ into n parts.
Unfortunately our function is not a bijection, because multiple lists go to the same partition. The reason is that partitions do not order the n parts, while our function does. For example, $(1,1,2,2)$ maps to partition $12 \cdot 34$, and $(2,2,1,1)$ maps to partition $34 \cdot 12$. These are the same partition. Luckily, though, this funciton is exactly n !-to-one, as there are n ! orderings of the n parts, in any fixed partition into n parts.
Hence there are just n ! times as many lists of size k, drawn from $[n]$, using each of $1,2, \ldots, n$ at least once, as there are partitions of $[k]$ into n parts, which is known to be $S(k, n)$.
10. Prove that $x^{n}=\sum_{k=1}^{n} S(n, k) x^{\underline{k}}$, for all $n \in \mathbb{N}$.

Base case: For $n=1$, the statement is $x^{1}=S(1,1) x$, which is true since $S(1,1)=1$ and $x^{1}=x^{1}=x$.

Inductive case: Assume that $x^{n}=\sum_{k=1}^{n} S(n, k) x^{\underline{k}}$ holds. We multiply both sides by x to get $x^{n+1}=\sum_{k=1}^{n} S(n, k) x \cdot x^{\underline{k}}$. We now expand $x \cdot x^{\underline{k}}=x \cdot x \cdot(x-1) \cdot(x-2) \cdots(x-k+1)=$ $(x-k+k) \cdot x \cdot(x-1) \cdot(x-2) \cdots(x-k+1)=x \underline{k+1}+k x^{\underline{k}}$. Substituting this back, we get $x^{n+1}=\sum_{k=1}^{n} S(n, k)\left[x \frac{k+1}{}+k x \underline{k}\right]=\sum_{k=1}^{n} S(n, k) x \frac{k+1}{}+\sum_{k=1}^{n} S(n, k) k x^{\underline{k}}={ }^{1} \sum_{j=2}^{n+1} S(n, j-1) x^{\underline{j}}+$ $\sum_{k=1}^{n} S(n, k) k x^{\underline{k}}={ }^{2} \sum_{j=1}^{n+1} S(n, j-1) x^{\underline{j}}+\sum_{k=1}^{n+1} S(n, k) k x^{\underline{k}}={ }^{3} \sum_{k=1}^{n+1}[S(n, k-1)+k S(n, k)] x^{\underline{k}}={ }^{4}$ $\sum_{k=1}^{n+1} S(n+1, k) x^{\underline{k}}$.
1: Reindexing via $j=k+1$
${ }^{2}$: Since $S(n, 0)=0=S(n, n+1)$
${ }^{3}$: Renaming j back to k so we can combine sums.
${ }^{4}$: Using the recurrence relation.

