MATH 579: Combinatorics

Homework 2: Due Sep. 11

1. Calculate $S(5,3)$ in two ways: with the formula involving binomial coefficients, and with the recurrence relation (and boundary conditions).
2. Explicitly find all partitions of $\{a, b, c, d, e\}$ into three nonempty parts.
3. Explicitly find all lists of length four, drawn from [3], using each of $1,2,3$ at least once.
4. Explicitly find all partitions of $\{a, b, c, d\}$ into any number of parts.
5. Explicitly find all lists of length three, drawn from $[n]$ for some $n \in \mathbb{N}$, using each of $1,2, \ldots, n$ at least once*.
6. Determine the number of factorizations of 2310 into integers greater than 1. For example, 2310 and $2 \cdot 1155$ are two of these.
7. Prove the boundary conditions $S(n, 1)=S(n, n)=1$, for all $n \in \mathbb{N}$.
8. Prove the recurrence relation $S(n+1, k)=k S(n, k)+S(n, k-1)$, for $n \geq k \geq 1$. Hint: look at the element $n+1$ separately.
9. Prove that there are $n!S(k, n)$ lists of size k, drawn from $[n]$, using each of $1,2, \ldots n$ at least once.
10. Prove that $x^{n}=\sum_{k=1}^{n} S(n, k) x^{\underline{k}}$, for all $n \in \mathbb{N}$. Hints: Induction on n, and $x=(x-k)+k$.
[^0]
[^0]: ${ }^{*}$ In this course, $\mathbb{N}=\{1,2,3, \ldots\}$, while $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$.

