MATH 579: Combinatorics

Homework 3: Due Sep. 18

- 1. Let $n \in \mathbb{N}$ be arbitrary. Determine the number of solutions in integers to $x_1 + x_2 + x_3 + \cdots + x_n = 26$, with each $x_i \ge 0$. Your answer should be a function of n.
- 2. Let $n \in \mathbb{N}$ be arbitrary. Determine the number of solutions in integers to $x_1 + x_2 + x_3 + \cdots + x_n = 26$, with each $x_i \geq -2$. Your answer should be a function of n.
- 3. Let $n \in \mathbb{N}$ be arbitrary. Determine the number of solutions in integers to $x_1 + x_2 + x_3 + \cdots + x_n = 26$, with each $x_i \ge 1 + i$. Your answer should be a function of n.
- 4. Let $n \in \mathbb{N}$ be arbitrary. Determine the number of solutions in integers to $x_1 + x_2 + x_3 + \cdots + x_n = 26$, with each $x_i \ge i^2$. Your answer should be a function of n.
- 5. Find explicitly all integer partitions of 8. Match each partition with its conjugate, and give its rank.
- 6. Find explicitly all integer partitions of 10 into odd parts.
- 7. Find explicitly all integer partitions of 10 into distinct parts.
- 8. Find explicitly all integer partitions of 25 into distinct odd parts.
- 9. Find explicitly all self-conjugate integer partitions of 25, and match them with your answers from exercise 8.
- 10. Prove that $p(1) + p(2) + \cdots + p(n) < p(2n)$ for all $n \in \mathbb{N}$. Hint: Look at the largest part.
- 11. Let v(n) denote the number of integer partitions of n in which each part is at least 2. Prove that v(n) = p(n) - p(n-1), for all $n \ge 2$. Hint: Look at the smallest part.
- 12. Let $n, k \in \mathbb{N}$. Let $p_k(n)$ denote the number of integer partitions of n into exactly k parts. Prove that $p_k(n)$ also counts the number of partitions of n, in which the largest part has size k.
- 13. Prove that $p_k(n)$ satisfies the recurrence relation $p_k(n) = p_k(n-k) + p_{k-1}(n-1)$. Hint: Look at the smallest part.
- 14. Using the recurrence relation from exercise 13, and the boundary conditions $p_1(n) = 1$ $(\forall n \in \mathbb{N})$ and $p_k(n) = 0$ $(\forall k \in \mathbb{N}, \forall n \in \mathbb{Z} \text{ with } n < k)$, calculate $p_5(10)$.