Homework 4 Solutions

1. Let $n \in \mathbb{N}_{0}$. Prove that $2^{n}=\sum_{i=0}^{n}\binom{n}{i}$.

We apply the binomial theorem with $x=y=1$ to get $2^{n}=(1+1)^{n}=\sum_{i=0}^{n}\binom{n}{i} 1^{i} 1^{(n-i)}=$ $\sum_{i=0}^{n}\binom{n}{i}$.
2. Let $n \in \mathbb{N}_{0}$. Prove that $\frac{3^{n}+(-1)^{n}}{2}=\sum_{\substack{i=0 \\ i \text { even }}}^{n} 2^{i}\binom{n}{i}$.

Apply the binomial theorem with $x=2, y=1$ to get $3^{n}=\sum_{i=0}^{n}\binom{n}{i} 2^{i}$. Apply the binomial theorem with $x=-2, y=1$ to get $(-1)^{n}=\sum_{i=0}^{n}\binom{n}{i}(-2)^{i}$. Adding, we get $3^{n}+(-1)^{n}=$ $\sum_{i=0}^{n}\left(2^{i}+(-2)^{i}\right)\binom{n}{i}$. Note that $2^{i}+(-2)^{i}=\left\{\begin{array}{ll}0 & i \text { odd } \\ 2 \cdot 2^{i} & i \text { even }\end{array}\right.$. Hence $3^{n}+(-1)^{n}=\sum_{\substack{i=0 \\ i \text { even }}}^{n} 2$. $2^{i}\binom{n}{i}$. Now divide both sides by 2.
3. Let $n \in \mathbb{N}_{0}$. Prove that $\frac{6^{n}-(-4)^{n}}{2}=\sum_{\substack{i=1 \\ i \text { odd }}}^{n} 5^{i}\binom{n}{i}$.

Apply the binomial theorem with $x=5, y=1$ to get $6^{n}=\sum_{i=0}^{n}\binom{n}{i} 5^{i}$. Apply the binomial theorem with $x=-5, y=1$ to get $(-4)^{n}=\sum_{i=0}^{n}\binom{n}{i}(-5)^{i}$. Subtract the second from the first to get $6^{n}-(-4)^{n}=\sum_{i=0}^{n}\left(5^{i}-(-5)^{i}\right)\binom{n}{i}$. Note that $5^{i}-(-5)^{i}=\left\{\begin{array}{ll}2 \cdot 5^{i} & i \text { odd } \\ 0 & i \text { even }\end{array}\right.$. Hence $6^{n}+(-4)^{n}=\sum_{\substack{i=0 \\ i \text { odd }}}^{n} 2 \cdot 5^{i}\binom{n}{i}$. Now divide both sides by 2 , and observe that 0 is not odd
4. Let $n \in \mathbb{N}_{0}$. Prove that $n 2^{n-1}=\sum_{i=0}^{n} i\binom{n}{i}$.

Apply the binomial theorem with $y=1$ to get $(x+1)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i}$. Take the derivative with respect to x of both sides, to get $n(x+1)^{n-1}=\sum_{i=0}^{n}\binom{n}{i} i x^{i-1}$. Now substitute $x=1$ to get the desired formula.
5. Let $n \in \mathbb{N}_{0}$. Prove that $\frac{1}{n+1}=\sum_{i=0}^{n} \frac{(-1)^{i}}{i+1}\binom{n}{i}$.

Apply the binomial theorem with $y=1$ to get $(x+1)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i}$. Take the integral with respect to x of both sides to get $\frac{1}{n+1}(x+1)^{n+1}+C=\sum_{i=0}^{n}\binom{n}{i} \frac{1}{i+1} x^{i+1}$. To find C, we plug in $x=0$. The RHS is 0 , while the LHS is $\frac{1}{n+1}+C$. Hence $C=\frac{-1}{n+1}$. Now, we plug in $x=-1$ instead. We get $\frac{-1}{n+1}=0+C=\sum_{i=0}^{n}\binom{n}{i} \frac{1}{i+1}(-1)^{i+1}$. Lastly, we multiply both sides by -1 to get the desired formula.
6. How many different acronyms does MISSISSIPPI have?

This eleven-letter word contains one M, two P's, four I's, and four S's. This is calculated via the multinomial coefficient $\binom{11}{1,2,4,4}=\frac{11!}{1!2!4!4!}=34650$.
7. Let $n \in \mathbb{N}_{0}$. Prove that $3^{n}=\sum_{i+j+k=n}\binom{n}{i, j, k}$.

We can apply the multinomial theorem with $x=y=z=1$ to get $3^{n}=(1+1+1)^{n}=$ $\sum_{i+j+k=n}\binom{n}{i, j, k} 1^{i} 1^{j} 1^{k}=\sum_{i+j+k=n}\binom{n}{i, j, k}$.
8. Let $n \in \mathbb{N}_{0}$. Prove that $1=\sum_{i+j+k=n}(-1)^{i}\binom{n}{i, j, k}$.

We can apply the multinomial theorem with $y=z=1, x=-1$ to get $1=1^{n}=$ $(-1+1+1)^{n}=\sum_{i+j+k=n}\binom{n}{i, j, k}(-1)^{i} 1^{j} 1^{k}=\sum_{i+j+k=n}\binom{n}{i, j, k}(-1)^{i}$.
9. What is the largest coefficient in $\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)^{150}$?

The key to this problem is the following:
Lemma: Let $a, b \in \mathbb{N}_{0}$. If $a \geq b+2$, then $a!b!>(a-1)!(b+1)!$.
Proof: Since $a \geq b+2$, in fact $a>b+1$. Now multiply both sides by $(a-1)!b!$.
Now, the coefficients in our multivariate polynomial are all $\left(\begin{array}{l}a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\end{array}\right)=\frac{150!}{a_{1}!a_{2}!a_{3}!a_{4}!a_{5}!}$, such that $a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=150$. If $a_{1} \geq a_{2}+2$, then we can replace the variables $\left\{a_{1}, a_{2}\right\}$ by $\left\{a_{1}^{\prime}, a_{2}^{\prime}\right\}$ where $a_{1}^{\prime}=a_{1}-1$ and $a_{2}^{\prime}=a_{2}+1$. We have $a_{1}^{\prime}+a_{2}^{\prime}+a_{3}+a_{4}+a_{5}=150$, so this gives another coefficient. By the lemma, our denominator has strictly decreased, so this coefficient is strictly larger. By applying this reasoning symmetrically to every pair of variables (not just a_{1}, a_{2}), we know that no variable can be 2 or more larger than any other. Hence our largest coefficient must arise where all the variables (a_{i} 's) are equal, or within 1. As it happens, we can take $a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=30$; this must be the maximal coefficient.

