MATH 579: Combinatorics

Homework 5 Solutions

- 1. (Symmetry) $\binom{a+b}{a} = \binom{a+b}{b}$. Since $a+b, a \in \mathbb{Z}$ with $a+b \ge a \ge 0$, we may use the factorial form of the binomial coefficient. $\binom{a+b}{a} = \frac{(a+b)!}{a!((a+b)-a)!} = \frac{(a+b)!}{a!b!} = \frac{(a+b)!}{b!a!} = = \frac{(a+b)!}{b!((a+b)-b)!} = \binom{a+b}{b}$.
- 2. (Pascal's Rule) $\binom{x}{a} + \binom{x}{a+1} = \binom{x+1}{a+1}$.

We calculate $(a + 1)x^{\underline{a}} + x^{\underline{a+1}} = x^{\underline{a}}((a + 1) + (x - (a + 1) + 1)) = x^{\underline{a}}(x + 1) = (x + 1)^{\underline{a+1}}$. Divide both sides by (a + 1)! and the result follows.

3. (Extraction) $\binom{x}{a} = \frac{x}{a} \binom{x-1}{a-1}$. (provided $a \neq 0$)

Peeling off the first term, we see that $x^{\underline{a}} = x \cdot (x-1)^{\underline{a-1}}$. Divide both sides by $a! = a \cdot (a-1)!$ and the result follows.

4. (Committee/Chair) $(a+1)\binom{x}{a+1} = x\binom{x-1}{a}$.

This symmetric version of the extraction identity comes from multiplying both sides by a, and replacing a by a + 1. It gets its name from the special case when $x \in \mathbb{N}$. Then, the LHS counts the ways to pick a committee of a + 1 out of x people, then pick a chair from the committee's members. The RHS counts the ways to pick the chair first, out of x people, then pick the remaining a members of the committee out of the remaining x - 1 people.

5. (Twisting)
$$\binom{x}{a}\binom{x-a}{b} = \binom{x}{b}\binom{x-b}{a}$$
.

We see that $x^{\underline{a}}(x-a)^{\underline{b}} = x(x-1)\cdots(x-a+1)(x-a)(x-a-1)\cdots(x-a-b+1) = x^{\underline{a+b}} = x(x-1)\cdots(x-b+1)(x-b)(x-b-1)\cdots(x-b-a+1) = x^{\underline{b}}(x-b)^{\underline{a}}$. Divide both sides by a!b! = b!a! and the result follows.

6. (Negation) $\binom{x}{a} = (-1)^a \binom{a-x-1}{a}$.

We write $x^{\underline{a}} = (x-0)(x-1)(x-2)\cdots(x-a+2)(x-a+1) = (-1)^{\underline{a}}(0-x)(1-x)(2-x)\cdots(a-x-2)(a-x-1) = (-1)^{\underline{a}}(a-x-1)(a-x-2)\cdots(2-x)(1-x)(0-x) = (-1)^{\underline{a}}(a-x-1)(a-x-2)\cdots(a-x-1-(a-2))(a-x-1-(a-2))(a-x-1-(a-1)) = (-1)^{\underline{a}}(a-x-1)^{\underline{a}}.$ Divide both sides by \underline{a} ! and the result follows.

7. $\binom{-\frac{1}{2}}{a} = (-1)^a \binom{2a}{a} 2^{-2a}$.

For this problem and the next it is useful (but not necessary) to define the double factorial, $n!! = n \cdot (n-2)!!$, with 0!! = 1!! = 1. We now prove a lemma: For n = 2k - 1 odd, $n!! = \frac{(2k)!}{2^{k}k!}$. Proof: Induction on k. k = 1, $1!! = 1 = \frac{2!}{2^{1}1!}$. Assume that $n!! = \frac{(2k)!}{2^{k}k!}$, and multiply both sides by n+2 = 2k+1. We get $(n+2)!! = (n+2) \cdot n!! = \frac{(2k+1)\cdot(2k)!}{2^{k}k!} = \frac{(2k+2)(2k+1)\cdot(2k)!}{(2k+2)2^{k}k!} = \frac{(2(k+1))!}{2^{k+1}(k+1)!}$. Now, $(-\frac{1}{2})^{\underline{a}} = (-\frac{1}{2})(-\frac{1}{2} - 1)(-\frac{1}{2} - 2) \cdots (-\frac{1}{2} - a + 1) = (-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2}) \cdots (-\frac{2a-1}{2}) = (-1)^{a}2^{-a}(2a-1)!! = (-1)^{a}2^{-a}(\frac{(2a)!}{2^{a}a!} = (-1)^{a}2^{-2a}(\frac{(2a)!}{a!}$. Now divide both sides by a!.

8. $\binom{\frac{1}{2}}{a} = (-1)^{a+1} \binom{2a}{a} \frac{2^{-2a}}{2a-1}.$

We have $(\frac{1}{2})^a = (\frac{1}{2})(\frac{1}{2}-1)(\frac{1}{2}-2)\cdots(\frac{1}{2}-a+1) = (\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2})\cdots(-\frac{2a-3}{2}) = (-1)^{a-1}2^{-a}(2a-3)!! = (-1)^{a-1}2^{-a}(\frac{2a-2}{2a-1})! = (-1)^{a-1}2^{-a}(2a-3)!! = (-1)^{a-1}2^{-a}\frac{(2a)(2a-1)(2a-2)!}{(2a)(2a-1)(2a-1)!} = (-1)^{a-1}2^{-a}\frac{(2a)!}{2^aa!(2a-1)} = (-1)^{a+1}2^{-2a}\frac{1}{2a-1}\frac{(2a)!}{a!}$. Now divide both sides by a!.

9. (Chu-Vandermonde) $\binom{x+y}{a} = \sum_{k=0}^{a} \binom{x}{k} \binom{y}{a-k}$. Hint: $(t+1)^{x}(t+1)^{y}$

Assuming |t| < 1, we apply Newton's binomial theorem three times as follows. $\sum_{a\geq 0} \binom{x+y}{a}t^a = (t+1)^{x+y} = (t+1)^x(t+1)^y = \left(\sum_{a\geq 0} \binom{x}{a}t^a\right)\left(\sum_{a\geq 0} \binom{y}{a}t^a\right) = \sum_{a\geq 0} \left(\sum_{k=0}^a \binom{x}{k}\binom{y}{a-k}t^a\right)t^a$, using the formula for the product of power series. We now equate coefficients of t^a and are done.

10. (Chu-Vandermonde II)
$$(x+y)^{\underline{a}} = \sum_{k=0}^{a} {a \choose k} x^{\underline{k}} y^{\underline{a-k}}.$$

Multiply both sides of the Chu-Vandermonde identity by a! and note that $a!\binom{x}{k}\binom{y}{a-k} = \frac{a!}{k!(a-k)!}x^{\underline{k}}y^{\underline{a-k}} = \binom{a}{k}x^{\underline{k}}y^{\underline{a-k}}.$

- 11. $\sum_{k=0}^{a} {\binom{a}{k}}^2 = {\binom{2a}{a}}.$ Hint: Chu-Vandermonde Apply Chu-Vandermonde with x = y = a. Note that, by the symmetry identity, ${\binom{a}{a-k}} = {\binom{a}{k}}.$
- 12. (Hockey Stick) $\sum_{k=a}^{a+b} \binom{k}{a} = \binom{a+b+1}{a+1}.$

Induction on b. If b = 0, the LHS is $\binom{a}{a} = 1 = \binom{a+1}{a+1}$. Suppose now that $\sum_{k=a}^{a+b} \binom{k}{a} = \binom{a+b+1}{a+1}$, and add $\binom{a+b+1}{a}$ to both sides. We have $\sum_{k=a}^{a+b+1} \binom{k}{a} = \binom{a+b+1}{a} + \binom{a+b+1}{a+1} = \binom{a+b+2}{a+1}$, applying Pascal's Rule.

13. Suppose that $b \leq \frac{a-1}{2}$. Then $\binom{a}{b} \leq \binom{a}{b+1}$.

We have $a \ge 2b+1$, hence $a-b \ge b+1$, hence $\frac{1}{b+1} \ge \frac{1}{a-b}$. We multiply both sides by $\frac{a!}{b!(a-b-1)!}$ to get $\frac{a!}{(b+1)!(a-b-1)!} \ge \frac{a!}{b!(a-b)!}$, the desired result.

14. Suppose that $b \ge \frac{a-1}{2}$. Then $\binom{a}{b} \ge \binom{a}{b+1}$.

Set b' = a - (b+1). Since $b \ge \frac{a-1}{2}$, $b+1 \ge \frac{a+1}{2}$, and hence $b' = a - (b+1) \le a - \frac{a+1}{2} = \frac{a-1}{2}$. Apply the previous problem to get $\binom{a}{b'} \le \binom{a}{b'+1}$. Apply the symmetry identity twice to get $\binom{a}{a-b'} \le \binom{a}{a-b'-1}$, which is the desired result since a - b' = b + 1 and a - b' - 1 = b.

This problem, and the previous, prove that each row of Pascal's triangle is nondecreasing until the middle, and then nonincreasing. Such sequences are called unimodal.

15. $\frac{4^n}{2n+1} \le {\binom{2n}{n}} \le 4^n$. Hint: $(1+1)^{2n}$

We have $4^n = (1+1)^{2n} = \sum_{i=0}^{2n} \binom{2n}{i}$, by Newton's binomial theorem. Since all the summands are nonnegative, if we replace all but $\binom{2n}{n}$ with zero, the sum only decreases: $4^n = \sum_{i=0}^{2n} \binom{2n}{i} \ge \binom{2n}{n}$. This gives the upper bound. By unimodality proved by the previous two problems, the largest summand is $\binom{2n}{n}$. Hence if we replace each summand by this largest one, the sum only increases: $4^n = \sum_{i=0}^{2n} \binom{2n}{i} \le (2n+1)\binom{2n}{n}$. Dividing by 2n+1 gives the lower bound.