MATH 579: Combinatorics

Homework 5 Solutions

1. (Symmetry) $\binom{a+b}{a}=\binom{a+b}{b}$.

Since $a+b, a \in \mathbb{Z}$ with $a+b \geq a \geq 0$, we may use the factorial form of the binomial coefficient. $\binom{a+b}{a}=\frac{(a+b)!}{a!((a+b)-a)!}=\frac{(a+b)!}{a!b!}=\frac{(a+b)!}{b!a!}==\frac{(a+b)!}{b!((a+b)-b)!}=\binom{a+b}{b}$.
2. (Pascal's Rule) $\binom{x}{a}+\binom{x}{a+1}=\binom{x+1}{a+1}$.

We calculate $(a+1) x^{\underline{a}}+x^{\underline{a+1}}=x^{\underline{a}}((a+1)+(x-(a+1)+1))=x^{\underline{a}}(x+1)=(x+1)^{\underline{a+1}}$.
Divide both sides by $(a+1)$! and the result follows.
3. (Extraction) $\binom{x}{a}=\frac{x}{a}\binom{x-1}{a-1}$. (provided $\left.a \neq 0\right)$

Peeling off the first term, we see that $x^{\underline{a}}=x \cdot(x-1)^{\underline{a-1}}$. Divide both sides by $a!=a \cdot(a-1)$! and the result follows.
4. (Committee/Chair) $(a+1)\binom{x}{a+1}=x\binom{x-1}{a}$.

This symmetric version of the extraction identity comes from multiplying both sides by a, and replacing a by $a+1$. It gets its name from the special case when $x \in \mathbb{N}$. Then, the LHS counts the ways to pick a committee of $a+1$ out of x people, then pick a chair from the committee's members. The RHS counts the ways to pick the chair first, out of x people, then pick the remaining a members of the committee out of the remaining $x-1$ people.
5. (Twisting) $\binom{x}{a}\binom{x-a}{b}=\binom{x}{b}\binom{x-b}{a}$.

We see that $x^{\underline{a}}(x-a)^{\underline{b}}=x(x-1) \cdots(x-a+1)(x-a)(x-a-1) \cdots(x-a-b+1)=x^{\underline{a+b}}=$ $x(x-1) \cdots(x-b+1)(x-b)(x-b-1) \cdots(x-b-a+1)=x^{\underline{b}}(x-b)^{\underline{a}}$. Divide both sides by $a!b!=b!a!$ and the result follows.
6. (Negation) $\binom{x}{a}=(-1)^{a}\binom{a-x-1}{a}$.

We write $x^{\underline{a}}=(x-0)(x-1)(x-2) \cdots(x-a+2)(x-a+1)=(-1)^{a}(0-x)(1-x)(2-x) \cdots(a-$ $x-2)(a-x-1)=(-1)^{a}(a-x-1)(a-x-2) \cdots(2-x)(1-x)(0-x)=(-1)^{a}(a-x-1)(a-$ $x-2) \cdots(a-x-1-(a-3))(a-x-1-(a-2))(a-x-1-(a-1))=(-1)^{a}(a-x-1)^{a}$. Divide both sides by a ! and the result follows.
7. $\binom{-\frac{1}{2}}{a}=(-1)^{a}\binom{2 a}{a} 2^{-2 a}$.

For this problem and the next it is useful (but not necessary) to define the double factorial, $n!!=n \cdot(n-2)!!$, with $0!!=1!!=1$. We now prove a lemma: For $n=2 k-1$ odd, $n!!=\frac{(2 k)!}{2^{k} k!}$. Proof: Induction on $k . k=1,1!!=1=\frac{2!}{2^{1} 1!}$. Assume that $n!!=\frac{(2 k)!}{2^{k} k!}$, and multiply both sides by $n+2=2 k+1$. We get $(n+2)!!=(n+2) \cdot n!!=\frac{(2 k+1) \cdot(2 k)!}{2^{k} k!}=\frac{(2 k+2)(2 k+1) \cdot(2 k)!}{(2 k+2) 2^{k} k!}=\frac{(2(k+1))!}{2^{k+1}(k+1)!}$.
Now, $\left(-\frac{1}{2}\right)^{\underline{a}}=\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right) \cdots\left(-\frac{1}{2}-a+1\right)=\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right) \cdots\left(-\frac{2 a-1}{2}\right)=$ $(-1)^{a} 2^{-a}(2 a-1)!!=(-1)^{a} 2^{-a} \frac{(2 a)!}{2^{a} a!}=(-1)^{a} 2^{-2 a} \frac{(2 a)!}{a!}$. Now divide both sides by $a!$.
8. $\binom{\frac{1}{2}}{a}=(-1)^{a+1}\binom{2 a}{a} \frac{2^{-2 a}}{2 a-1}$.

We have $\left(\frac{1}{2}\right)^{\underline{a}}=\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \cdots\left(\frac{1}{2}-a+1\right)=\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \cdots\left(-\frac{2 a-3}{2}\right)=(-1)^{a-1} 2^{-a}(2 a-$ $3)!!=(-1)^{a-1} 2^{-a} \frac{(2 a-2)!}{2^{a-1}(a-1)!}=(-1)^{a-1} 2^{-a}(2 a-3)!!=(-1)^{a-1} 2^{-a} \frac{(2 a)(2 a-1)(2 a-2)!}{(2 a)(2 a-1) 2^{a-1}(a-1)!}=$ $=(-1)^{a-1} 2^{-a} \frac{(2 a)!}{2^{a} a!(2 a-1)}=(-1)^{a+1} 2^{-2 a} \frac{1}{2 a-1} \frac{(2 a)!}{a!}$. Now divide both sides by $a!$.
9. (Chu-Vandermonde) $\binom{x+y}{a}=\sum_{k=0}^{a}\binom{x}{k}\binom{y}{a-k}$. Hint: $(t+1)^{x}(t+1)^{y}$

Assuming $|t|<1$, we apply Newton's binomial theorem three times as follows. $\sum_{a \geq 0}\binom{x+y}{a} t^{a}=$ $(t+1)^{x+y}=(t+1)^{x}(t+1)^{y}=\left(\sum_{a \geq 0}\binom{x}{a} t^{a}\right)\left(\sum_{a \geq 0}\binom{y}{a} t^{a}\right)=\sum_{a \geq 0}\left(\sum_{k=0}^{a}\binom{x}{k}\binom{y}{a-k}\right) t^{a}$, using the formula for the product of power series. We now equate coefficients of t^{a} and are done.
10. (Chu-Vandermonde II) $(x+y)^{\underline{a}}=\sum_{k=0}^{a}\binom{a}{k} x^{\underline{k}} y^{\underline{a-k}}$.

Multiply both sides of the Chu-Vandermonde identity by a ! and note that $a!\binom{x}{k}\binom{y}{a-k}=$ $\frac{a!}{k!(a-k)!} x^{\underline{k}} y^{\underline{a-k}}=\binom{a}{k} x^{\underline{k}} y^{\underline{a-k}}$.
11. $\sum_{k=0}^{a}\binom{a}{k}^{2}=\binom{2 a}{a}$. Hint: Chu-Vandermonde

Apply Chu-Vandermonde with $x=y=a$. Note that, by the symmetry identity, $\binom{a}{a-k}=\binom{a}{k}$.
12. (Hockey Stick) $\sum_{k=a}^{a+b}\binom{k}{a}=\binom{a+b+1}{a+1}$.

Induction on b. If $b=0$, the LHS is $\binom{a}{a}=1=\binom{a+1}{a+1}$. Suppose now that $\sum_{k=a}^{a+b}\binom{k}{a}=\binom{a+b+1}{a+1}$, and add $\binom{a+b+1}{a}$ to both sides. We have $\sum_{k=a}^{a+b+1}\binom{k}{a}=\binom{a+b+1}{a}+\binom{a+b+1}{a+1}=\binom{a+b+2}{a+1}$, applying Pascal's Rule.
13. Suppose that $b \leq \frac{a-1}{2}$. Then $\binom{a}{b} \leq\binom{ a}{b+1}$.

We have $a \geq 2 b+1$, hence $a-b \geq b+1$, hence $\frac{1}{b+1} \geq \frac{1}{a-b}$. We multiply both sides by $\frac{a!}{b!(a-b-1)!}$ to get $\frac{a!}{(b+1)!(a-b-1)!} \geq \frac{a!}{b!(a-b)!}$, the desired result.
14. Suppose that $b \geq \frac{a-1}{2}$. Then $\binom{a}{b} \geq\binom{ a}{b+1}$.

Set $b^{\prime}=a-(b+1)$. Since $b \geq \frac{a-1}{2}, b+1 \geq \frac{a+1}{2}$, and hence $b^{\prime}=a-(b+1) \leq a-\frac{a+1}{2}=\frac{a-1}{2}$. Apply the previous problem to get $\binom{a}{b^{\prime}} \leq\binom{ a}{b^{\prime}+1}$. Apply the symmetry identity twice to get $\binom{a}{a-b^{\prime}} \leq\binom{ a}{a-b^{\prime}-1}$, which is the desired result since $a-b^{\prime}=b+1$ and $a-b^{\prime}-1=b$.
This problem, and the previous, prove that each row of Pascal's triangle is nondecreasing until the middle, and then nonincreasing. Such sequences are called unimodal.
15. $\frac{4^{n}}{2 n+1} \leq\binom{ 2 n}{n} \leq 4^{n}$. Hint: $(1+1)^{2 n}$

We have $4^{n}=(1+1)^{2 n}=\sum_{i=0}^{2 n}\binom{2 n}{i}$, by Newton's binomial theorem. Since all the summands are nonnegative, if we replace all but $\binom{2 n}{n}$ with zero, the sum only decreases: $4^{n}=\sum_{i=0}^{2 n}\binom{2 n}{i} \geq\binom{ 2 n}{n}$. This gives the upper bound. By unimodality proved by the previous two problems, the largest summand is $\binom{2 n}{n}$. Hence if we replace each summand by this largest one, the sum only increases: $4^{n}=\sum_{i=0}^{2 n}\binom{2 n}{i} \leq(2 n+1)\binom{2 n}{n}$. Dividing by $2 n+1$ gives the lower bound.

