MATH 579: Combinatorics

Homework 5: Due Oct. 9

In the following, assume that x, y are arbitrary real (or complex) numbers, while a, b, c represent nonnegative integers. Your task is to prove each of the following:

1. $($ Symmetry $)\binom{a+b}{a}=\binom{a+b}{b}$.
2. (Pascal's Rule) $\binom{x}{a}+\binom{x}{a+1}=\binom{x+1}{a+1}$.
3. $($ Extraction $)\binom{x}{a}=\frac{x}{a}\binom{x-1}{a-1} .($ provided $a \neq 0)$
4. (Committee/Chair) $(a+1)\binom{x}{a+1}=x\binom{x-1}{a}$.
5. (Twisting) $\binom{x}{a}\binom{x-a}{b}=\binom{x}{b}\binom{x-b}{a}$.
6. (Negation) $\binom{x}{a}=(-1)^{a}\binom{a-x-1}{a}$.
7. $\binom{-\frac{1}{2}}{a}=(-1)^{a}\binom{2 a}{a} 2^{-2 a}$.
8. $\binom{\frac{1}{2}}{a}=(-1)^{a+1}\binom{2 a}{a} \frac{2^{-2 a}}{2 a-1}$.
9. (Chu-Vandermonde) $\binom{x+y}{a}=\sum_{k=0}^{a}\binom{x}{k}\binom{y}{a-k}$. Hint: $(t+1)^{x}(t+1)^{y}$
10. (Chu-Vandermonde II) $(x+y)^{\underline{a}}=\sum_{k=0}^{a}\binom{a}{k} x^{\underline{k}} y \underline{\underline{a-k}}$.
11. $\sum_{k=0}^{a}\binom{a}{k}^{2}=\binom{2 a}{a}$. Hint: Chu-Vandermonde
12. (Hockey Stick) $\sum_{k=a}^{a+b}\binom{k}{a}=\binom{a+b+1}{a+1}$.
13. Suppose that $b \leq \frac{a-1}{2}$. Then $\binom{a}{b} \leq\binom{ a}{b+1}$.
14. Suppose that $b \geq \frac{a-1}{2}$. Then $\binom{a}{b} \geq\binom{ a}{b+1}$. Hint: Symmetry identity
15. $\frac{4^{n}}{2 n+1} \leq\binom{ 2 n}{n} \leq 4^{n}$. Hint: $(1+1)^{2 n}$
