MATH 579: Combinatorics

Homework 6 Solutions

1. Prove the following properties for arbitrary constant C and functions $f(x), g(x)$.
(a) $\Delta C=0$;
(b) $\Delta(C f(x))=C \Delta f(x)$; and
(c) $\Delta(f(x)+g(x))=(\Delta f(x))+(\Delta g(x))$.

We calculate $\Delta C=C-C=0, \Delta(C f(x))=C f(x+1)-C f(x)=C(f(x+1)-f(x))=$ $C \Delta f(x)$, and $\Delta(f(x)+g(x))=(f(x+1)+g(x+1))-(f(x)+g(x))=(f(x+1)-f(x))+$ $(g(x+1)-g(x))=\Delta f(x)+\Delta g(x)$.
2. Find all functions $f(x)$ satisfying $\Delta(\Delta f(x))=3$.

First, we find the functions $g(x)$ satisfying $\Delta g(x)=3$. There are infinitely many, namely $g(x)=3 x^{\underline{1}}+C$, for any constant C. We now find the functions $f(x)$ satisfying $\Delta f(x)=$ $g(x)=3 x^{\underline{1}}+C$. We get $f(x)=\frac{3}{2} x^{\underline{2}}+C x^{\underline{1}}+D$.
3. Compute $\sum_{i=1}^{n} i^{5}$, for arbitrary $n \in \mathbb{N}$.

We have $\sum_{i=1}^{n} i^{5}=\sum_{1}^{n+1} x^{5} \delta x=\sum_{1}^{n+1} x^{\underline{1}}+15 x^{\underline{2}}+25 x^{\underline{3}}+10 x^{\underline{4}}+x^{\underline{5}} \delta x$, using our table for $S(n, k)$.
We continue as $\frac{1}{2} x^{\underline{2}}+5 x^{\underline{3}}+\frac{25}{4} x^{\underline{4}}+2 x^{\underline{5}}+\left.\frac{1}{6} x^{6}\right|_{1} ^{n+1}=\frac{1}{2}(n+1)^{\underline{2}}+5(n+1)^{\underline{3}}+\frac{25}{4}(n+1)^{\underline{4}}+2(n+$ $1)^{\frac{5}{6}}+\frac{1}{6}(n+1)^{\underline{6}}-0$.
4. Let $c \in \mathbb{R}$. Compute Δc^{x}. Use this to find an anti-difference of c^{x}, and hence the geometric sum $\sum_{a}^{b} c^{x} \delta x($ for $c \neq 1)$.
We have $\Delta c^{x}=c^{x+1}-c^{x}=(c-1) c^{x}$, so an anti-difference is $\frac{c^{x}}{c-1}$ (for $c \neq 1$). Hence $\sum_{a}^{b} c^{x} \delta x=\left.\frac{c^{x}}{c-1}\right|_{a} ^{b}=\frac{c^{b}-c^{a}}{c-1}$.
5. For $c \in \mathbb{R}$ and $x \in \mathbb{N}$, compute $\Delta c^{\underline{x}}$. Use this to find an anti-difference of $\frac{(-2)^{\underline{k}}}{k}$, and hence the sum $\sum_{k=2}^{n} \frac{(-2)^{k}}{k}$.
We have $\Delta c^{\underline{x}}=c^{\underline{x+1}}-c^{\underline{\underline{x}}}=c^{\underline{x}}(c-x-1)=c^{\underline{x+2}} /(c-x)$. Hence $\Delta(-2)^{\underline{x}}=(-2) \underline{x+2} /(-2-x)$, and $\Delta(-2)^{\underline{x-2}}=(-2)^{\underline{x}} /(-2-(x-2))=-(-2)^{\underline{x}} / x$. Taking negatives, we get $\Delta\left[-(-2)^{\underline{x-2}}\right]=$ $(-2)^{\underline{x}} / x$. Hence the desired sum is $-\left.(-2)^{\underline{x-2}}\right|_{2} ^{n+1}=-(-2)^{n-1}+(-2)^{\underline{0}}=1-(-2)^{n-1}$.
6. For $k \in \mathbb{N}$, we define $x \underline{-k}=\frac{1}{(x+1)(x+2) \cdots(x+k)}$. Prove that $\Delta x^{\underline{-k}}=-k x \underline{-k-1}$.

We calculate $\Delta x \underline{-k}=(x+1) \underline{-k}-x \underline{-k}=\frac{1}{(x+2)(x+3) \cdots(x+k+1)}-\frac{1}{(x+1)(x+2) \cdots(x+k)}=$ $=\frac{x+1}{(x+1)(x+2)(x+3) \cdots(x+k+1)}-\frac{x+k+1}{(x+1)(x+2) \cdots(x+k)(x+k+1)}=\frac{-k}{(x+1)(x+2) \cdots(x+k)(x+k+1)}=-k x \frac{-k-1}{}$.
7. For $x \in \mathbb{N}$, we define $H_{x}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{x}$. Prove that $\Delta H_{x}=x \underline{-1}$.

We calculate $\Delta H_{x}=H_{x+1}-H_{x}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{x}+\frac{1}{x+1}-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{x}\right)=\frac{1}{x+1}=x \underline{-1}$.
8.

Prove that $x^{\underline{m+n}}=x^{\underline{m}}(x-m)^{\underline{n}}$ for all integers m, n. (there are cases)
Case 1: $m, n \geq 0$. (done in class)
$x^{\underline{m}}(x-m)^{\underline{n}}=x(x-1) \cdots(x-m+1)(x-m)(x-m-1) \cdots(x-m-n+1)=x^{\underline{m+n}}$.

Case 2: $m, n<0 . x^{\underline{m}}(x-m)^{\underline{n}}=\frac{1}{(x+1)(x+2) \cdots(x-m)} \frac{1}{(x-m+1)(x-m+2) \cdots(x-m-n)}=x \underline{m+n}$.
Case 3: $m \geq 0>n . x^{\underline{m}}(x-m)^{\underline{n}}=x(x-1) \cdots(x-m+1) \frac{1}{(x-m+1)(x-m+2) \cdots(x-m-n)}=$ $\frac{(x-m+1)(x-m+2) \cdots(x-m+m)}{(x-m+1)(x-m+2) \cdots(x-m-n)}$. Note that the terms in the numerator and denominator cancel, until they run out. If $m \geq-n$ (i.e. $m+n \geq 0$), then the result is $(x-m-n+1) \cdots(x-m+m)=$ $x(x-1) \cdots(x-m-n+1)=x \underline{m+n}$. If instead $m<-n$ (i.e. $m+n<0$), then the result is $\frac{1}{(x-m+m+1)(x-m+m+2) \cdots(x-m-n)}=\frac{1}{(x+1)(x+2) \cdots(x-m-n)}=x \underline{m+n}$.
Case 4: $n \geq 0>m \cdot x^{\underline{m}}(x-m)^{\underline{n}}=\frac{1}{(x+1)(x+2) \cdots(x-m)}(x-m)(x-m-1) \cdots(x-m-n+1)=$ $=\frac{(x-m)(x-m-1) \cdots(x-m-n+1)}{(x-m)(x-m-1) \cdots(x-m+m+1)}$. Again the terms cancel nicely. If $n \geq-m$, then the result is $x(x-1) \cdots(x-m-n+1)=x^{m+n}$. If instead $n<-m$, then the result is $\frac{1}{(x-m-n)(x-m-n-1) \cdots(x+1)}=\frac{1}{(x+1)(x+2) \cdots(x-m-n)}=x \underline{m+n}$.
9. Calculate $\sum_{0}^{n} x 3^{x} \delta x$. Your answer should be a function of n.

We set $u=x=x \underline{1}, \Delta v=3^{x}$. Note that $\Delta u=1$ and $v=\frac{1}{2} \cdot 3^{x}$. We sum by parts, getting $\sum x 3^{x} \delta x=x\left(\frac{1}{2}\right) 3^{x}-\sum \frac{1}{2} 3^{x+1} \delta x=x\left(\frac{1}{2}\right) 3^{x}-\frac{3}{2} \sum 3^{x} \delta x=x\left(\frac{1}{2}\right) 3^{x}-\frac{3}{4} 3^{x}$. Evaluating from 0 to n we get $n\left(\frac{1}{2}\right) 3^{n}-\frac{3}{4} 3^{n}-\left(0-\frac{3}{4}\right)=\frac{2 n 3^{n}-3^{n+1}+3}{4}$.
10. Calculate $\sum_{0}^{n} x^{2} 2^{x} \delta x$.

We set $u=x^{2}=x^{\underline{2}}+x^{\underline{1}}, \Delta v=2^{x}=v$. Note that $\Delta u=2 x^{\underline{1}}+1$. We sum by parts, getting $\sum x^{2} 2^{x} \delta x=x^{2} 2^{x}-\sum 2^{x+1}\left(2 x^{1}+1\right) \delta x=x^{2} 2^{x}-4 \sum x^{1} 2^{x} \delta x-2 \sum 2^{x} \delta x=x^{2} 2^{x}-$ $2^{x+1}-4 \sum x^{1} 2^{x} \delta x$. We sum by parts again, setting $u=x=x^{1}, \Delta v=2^{x}=v$, with $\Delta u=1$. We get $\sum x x^{1} 2^{x} \delta x=x 2^{x}-\sum 2^{x+1} \delta x=x 2^{x}-2^{x+1}$. Combining, we get $\sum x^{2} 2^{x} \delta x=$ $x^{2} 2^{x}-2^{x+1}-4\left(x 2^{x}-2^{x+1}\right)=x^{2} 2^{x}-x 2^{x+2}+3 \cdot 2^{x+1}$. Evaluating from 0 to n we get $n^{2} 2^{n}-n 2^{n+2}+3 \cdot 2^{n+1}-(0-0+6)=n^{2} 2^{n}-n 2^{n+2}+3 \cdot 2^{n+1}-6$.
11. Calculate $\sum_{0}^{n} x H_{x} \delta x$. (hint: summation by parts and exercise 8)

We set $u=H_{x}, \Delta v=x=x^{\underline{1}}$. This gives $\Delta u=x-\frac{1}{-1}$ and $v=\frac{1}{2} x^{2}$. We sum by parts, getting $\sum x H_{x} \delta x=\frac{1}{2} x^{\underline{2}} H_{x}-\sum \frac{1}{2}(x+1)^{2} x \underline{-1} \delta x$. By Exercise $8,(x+1)^{\underline{2} x} \underline{\underline{-1}}=x$, so $\sum x H_{x} \delta x=$ $\frac{1}{2} x^{2} H_{x}-\frac{1}{2} \sum x^{\underline{1}} \delta x=\frac{1}{2} x^{2} H_{x}-\frac{1}{4} x^{\underline{2}}$. Evaluating from 0 to n we get $\frac{1}{2} n^{\frac{2}{2}} H_{n}-\frac{1}{4} n^{2}-(0-0)$.
12. Calculate $\sum_{1}^{n} \frac{2 x+1}{x(x+1)} \delta x$.

Solution 1: Breaking the fraction up, we get $\frac{2 x+1}{x(x+1)}=\frac{2}{x+1}+\frac{1}{x(x+1)}$. Hence our sum is $\sum_{1}^{n} 2 x-10 x+\sum_{1}^{n}(x-1) \underline{-2} \delta x=\sum_{1}^{n} 2 x-1 \delta x+\sum_{0}^{n-1} x-2 \delta x=\left.2 H_{x}\right|_{1} ^{n}-x=\left.1\right|_{0} ^{n-1}=2 H_{n}-2 H_{1}-$ $(n-1) \underline{-1}+0 \underline{-1}=2 H_{n}-2-\frac{1}{(n-1)+1}+\frac{1}{0+1}=2 H_{n}-\frac{1}{n}-1$.
Solution 2: By partial fractions, we see that $\frac{2 x+1}{x(x+1)}=\frac{1}{x}+\frac{1}{x+1}$. Hence our sum is $\sum_{k=1}^{n-1} \frac{1}{k}+$ $\frac{1}{k+1}=\sum_{k=1}^{n-1} \frac{1}{k}+\sum_{k=1}^{n-1} \frac{1}{k+1}=H_{n-1}+\left(H_{n}-1\right)=2 H_{n}-\frac{1}{n}-1$.
Note: The original problem had a typo: it was missing δx, so full credit was given for either the above solution, or for solving the very similar problem $\sum_{x=1}^{n} \frac{2 x+1}{x(x+1)}$, with solution $H_{n}+\left(H_{n+1}-1\right)=2 H_{n+1}-\frac{1}{n+1}-1$.

