MATH 579: Combinatorics

Homework 6 Solutions

- 1. Prove the following properties for arbitrary constant C and functions f(x), g(x).
 - (a) $\Delta C = 0;$
 - (b) $\Delta(Cf(x)) = C\Delta f(x)$; and

(c) $\Delta(f(x) + g(x)) = (\Delta f(x)) + (\Delta g(x)).$

We calculate $\Delta C = C - C = 0$, $\Delta(Cf(x)) = Cf(x+1) - Cf(x) = C(f(x+1) - f(x)) = C\Delta f(x)$, and $\Delta(f(x) + g(x)) = (f(x+1) + g(x+1)) - (f(x) + g(x)) = (f(x+1) - f(x)) + (g(x+1) - g(x)) = \Delta f(x) + \Delta g(x)$.

- 2. Find all functions f(x) satisfying $\Delta(\Delta f(x)) = 3$. First, we find the functions g(x) satisfying $\Delta g(x) = 3$. There are infinitely many, namely $g(x) = 3x^{1} + C$, for any constant C. We now find the functions f(x) satisfying $\Delta f(x) = g(x) = 3x^{1} + C$. We get $f(x) = \frac{3}{2}x^{2} + Cx^{1} + D$.
- 3. Compute $\sum_{i=1}^{n} i^5$, for arbitrary $n \in \mathbb{N}$.

We have $\sum_{i=1}^{n} i^5 = \sum_{1}^{n+1} x^5 \delta x = \sum_{1}^{n+1} x^{\underline{1}} + 15x^{\underline{2}} + 25x^{\underline{3}} + 10x^{\underline{4}} + x^{\underline{5}} \delta x$, using our table for S(n,k). We continue as $\frac{1}{2}x^{\underline{2}} + 5x^{\underline{3}} + \frac{25}{4}x^{\underline{4}} + 2x^{\underline{5}} + \frac{1}{6}x^{\underline{6}}|_1^{n+1} = \frac{1}{2}(n+1)^{\underline{2}} + 5(n+1)^{\underline{3}} + \frac{25}{4}(n+1)^{\underline{4}} + 2(n+1)^{\underline{5}} + \frac{1}{6}(n+1)^{\underline{6}} - 0.$

- 4. Let $c \in \mathbb{R}$. Compute Δc^x . Use this to find an anti-difference of c^x , and hence the geometric $\sup \sum_a^b c^x \delta x$ (for $c \neq 1$). We have $\Delta c^x = c^{x+1} - c^x = (c-1)c^x$, so an anti-difference is $\frac{c^x}{c-1}$ (for $c \neq 1$). Hence $\sum_a^b c^x \delta x = \frac{c^x}{c-1} |_a^b = \frac{c^b - c^a}{c-1}$.
- 5. For $c \in \mathbb{R}$ and $x \in \mathbb{N}$, compute $\Delta c^{\underline{x}}$. Use this to find an anti-difference of $\frac{(-2)^{\underline{k}}}{k}$, and hence the sum $\sum_{k=2}^{n} \frac{(-2)^{\underline{k}}}{k}$. We have $\Delta c^{\underline{x}} = c^{\underline{x+1}} - c^{\underline{x}} = c^{\underline{x}}(c-x-1) = c^{\underline{x+2}}/(c-x)$. Hence $\Delta(-2)^{\underline{x}} = (-2)^{\underline{x+2}}/(-2-x)$, and $\Delta(-2)^{\underline{x-2}} = (-2)^{\underline{x}}/(-2-(x-2)) = -(-2)^{\underline{x}}/x$. Taking negatives, we get $\Delta[-(-2)^{\underline{x-2}}] = (-2)^{\underline{x}}/x$. Hence the desired sum is $-(-2)^{\underline{x-2}}|_{2}^{n+1} = -(-2)^{\underline{n-1}} + (-2)^{\underline{0}} = 1 - (-2)^{\underline{n-1}}$.
- 6. For $k \in \mathbb{N}$, we define $x^{-k} = \frac{1}{(x+1)(x+2)\cdots(x+k)}$. Prove that $\Delta x^{-k} = -kx^{-k-1}$. We calculate $\Delta x^{-k} = (x+1)^{-k} - x^{-k} = \frac{1}{(x+2)(x+3)\cdots(x+k+1)} - \frac{1}{(x+1)(x+2)\cdots(x+k)} = \frac{x+1}{(x+1)(x+2)(x+3)\cdots(x+k+1)} - \frac{x+k+1}{(x+1)(x+2)\cdots(x+k)(x+k+1)} = -kx^{-k-1}$.
- 7. For $x \in \mathbb{N}$, we define $H_x = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{x}$. Prove that $\Delta H_x = x^{-1}$. We calculate $\Delta H_x = H_{x+1} - H_x = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{x} + \frac{1}{x+1} - (\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{x}) = \frac{1}{x+1} = x^{-1}$.
- 8. Prove that $x^{\underline{m+n}} = x^{\underline{m}}(x-m)^{\underline{n}}$ for all integers m, n. (there are cases) Case 1: $m, n \ge 0$. (done in class) $x^{\underline{m}}(x-m)^{\underline{n}} = x(x-1)\cdots(x-m+1)(x-m)(x-m-1)\cdots(x-m-n+1) = x^{\underline{m+n}}$.

 $\begin{array}{l} \text{Case 2: } m,n<0. \ x^{\underline{m}}(x-m)^{\underline{n}} = \frac{1}{(x+1)(x+2)\cdots(x-m)} \frac{1}{(x-m+1)(x-m+2)\cdots(x-m-n)} = x^{\underline{m}+\underline{n}}.\\ \text{Case 3: } m \geq 0 > n. \ x^{\underline{m}}(x-m)^{\underline{n}} = x(x-1)\cdots(x-m+1)\frac{1}{(x-m+1)(x-m+2)\cdots(x-m-n)} = \frac{(x-m+1)(x-m+2)\cdots(x-m+m)}{(x-m+1)(x-m+2)\cdots(x-m-n)}.\\ \text{(x-m+1)}(x-m+2)\cdots(x-m+m).\\ \text{(x-m+1)}(x-m+2)\cdots(x-m-n) \end{array} . Note that the terms in the numerator and denominator cancel, until they run out. If <math>m \geq -n$ (i.e. $m+n \geq 0$), then the result is $(x-m-n+1)\cdots(x-m+m) = x(x-1)\cdots(x-m-n+1) = x^{\underline{m}+\underline{n}}.$ If instead m < -n (i.e. m+n < 0), then the result is $\frac{1}{(x-m+m+1)(x-m+m+2)\cdots(x-m-n)} = \frac{1}{(x+1)(x+2)\cdots(x-m-n)} = x^{\underline{m}+\underline{n}}.\\ \text{Case 4: } n \geq 0 > m. \ x^{\underline{m}}(x-m)^{\underline{n}} = \frac{1}{(x+1)(x+2)\cdots(x-m)}(x-m)(x-m-1)\cdots(x-m-n+1) = \frac{(x-m)(x-m-1)\cdots(x-m-n+1)}{(x-m)(x-m-1)\cdots(x-m+m+1)}. \\ \text{Again the terms cancel nicely. If } n \geq -m, \text{ then the result is } x(x-1)\cdots(x-m-n+1) = \frac{1}{(x+1)(x+2)\cdots(x-m)} = x^{\underline{m}+\underline{n}}. \\ \text{Sult is } x(x-1)\cdots(x-m-n+1) = x^{\underline{m}+\underline{n}}. \\ \text{If instead } n < -m, \text{ then the result is } \frac{1}{(x-m-n)(x-m-n-1)\cdots(x-m-n+1)} = \frac{1}{(x+1)(x+2)\cdots(x-m-n)} = x^{\underline{m}+\underline{n}}. \end{aligned}$

9. Calculate $\sum_{x=1}^{n} x 3^x \delta x$. Your answer should be a function of n.

We set $u = x = x^{\frac{1}{2}}, \Delta v = 3^x$. Note that $\Delta u = 1$ and $v = \frac{1}{2} \cdot 3^x$. We sum by parts, getting $\sum x 3^x \delta x = x(\frac{1}{2}) 3^x - \sum \frac{1}{2} 3^{x+1} \delta x = x(\frac{1}{2}) 3^x - \frac{3}{2} \sum 3^x \delta x = x(\frac{1}{2}) 3^x - \frac{3}{4} 3^x$. Evaluating from 0 to n we get $n(\frac{1}{2}) 3^n - \frac{3}{4} 3^n - (0 - \frac{3}{4}) = \frac{2n3^n - 3^{n+1} + 3}{4}$.

10. Calculate $\sum_{0}^{n} x^2 2^x \delta x$.

We set $u = x^2 = x^2 + x^{\frac{1}{2}}, \Delta v = 2^x = v$. Note that $\Delta u = 2x^{\frac{1}{2}} + 1$. We sum by parts, getting $\sum x^{2}2^x \delta x = x^22^x - \sum 2^{x+1}(2x^{\frac{1}{2}} + 1)\delta x = x^22^x - 4\sum x^{\frac{1}{2}x}\delta x - 2\sum 2^x\delta x = x^22^x - 2^{x+1} - 4\sum x^{\frac{1}{2}x}\delta x$. We sum by parts again, setting $u = x = x^{\frac{1}{2}}, \Delta v = 2^x = v$, with $\Delta u = 1$. We get $\sum x^{\frac{1}{2}x}\delta x = x2^x - \sum 2^{x+1}\delta x = x2^x - 2^{x+1}$. Combining, we get $\sum x^{2}2^x\delta x = x^2x^2 - 2^{x+1} - 4(x2^x - 2^{x+1}) = x^22^x - x2^{x+2} + 3 \cdot 2^{x+1}$. Evaluating from 0 to n we get $n^22^n - n2^{n+2} + 3 \cdot 2^{n+1} - (0 - 0 + 6) = n^22^n - n2^{n+2} + 3 \cdot 2^{n+1} - 6$.

11. Calculate $\sum_{0}^{n} x H_x \delta x$. (hint: summation by parts and exercise 8)

We set $u = H_x$, $\Delta v = x = x^{\frac{1}{2}}$. This gives $\Delta u = x^{-\frac{1}{2}}$ and $v = \frac{1}{2}x^{\frac{2}{2}}$. We sum by parts, getting $\sum xH_x\delta x = \frac{1}{2}x^2H_x - \sum \frac{1}{2}(x+1)^2x^{-\frac{1}{2}}\delta x$. By Exercise 8, $(x+1)^2x^{-\frac{1}{2}} = x^{\frac{1}{2}}$, so $\sum xH_x\delta x = \frac{1}{2}x^2H_x - \frac{1}{2}\sum x^{\frac{1}{2}}\delta x = \frac{1}{2}x^2H_x - \frac{1}{4}x^2$. Evaluating from 0 to n we get $\frac{1}{2}n^2H_n - \frac{1}{4}n^2 - (0-0)$.

12. Calculate $\sum_{1}^{n} \frac{2x+1}{x(x+1)} \delta x$.

Solution 1: Breaking the fraction up, we get $\frac{2x+1}{x(x+1)} = \frac{2}{x+1} + \frac{1}{x(x+1)}$. Hence our sum is $\sum_{1}^{n} 2x \frac{-1}{2} \delta x + \sum_{1}^{n} (x-1) \frac{-2}{2} \delta x = \sum_{1}^{n} 2x \frac{-1}{2} \delta x + \sum_{0}^{n-1} x \frac{-2}{2} \delta x = 2H_x |_{1}^{n} - x \frac{-1}{2} |_{0}^{n-1} = 2H_n - 2H_1 - (n-1) \frac{-1}{2} + 0 \frac{-1}{2} = 2H_n - 2 - \frac{1}{(n-1)+1} + \frac{1}{0+1} = 2H_n - \frac{1}{n} - 1.$

Solution 2: By partial fractions, we see that $\frac{2x+1}{x(x+1)} = \frac{1}{x} + \frac{1}{x+1}$. Hence our sum is $\sum_{k=1}^{n-1} \frac{1}{k} + \frac{1}{k+1} = \sum_{k=1}^{n-1} \frac{1}{k} + \sum_{k=1}^{n-1} \frac{1}{k+1} = H_{n-1} + (H_n - 1) = 2H_n - \frac{1}{n} - 1$.

Note: The original problem had a typo: it was missing δx , so full credit was given for either the above solution, or for solving the very similar problem $\sum_{x=1}^{n} \frac{2x+1}{x(x+1)}$, with solution $H_n + (H_{n+1} - 1) = 2H_{n+1} - \frac{1}{n+1} - 1$.