
MATH 579: Combinatorics
Homework 6 Solutions

1. Prove the following properties for arbitrary constant C and functions f(x), g(x).

(a) ∆C = 0;

(b) ∆(Cf(x)) = C∆f(x); and

(c) ∆(f(x) + g(x)) = (∆f(x)) + (∆g(x)).

We calculate ∆C = C − C = 0, ∆(Cf(x)) = Cf(x + 1) − Cf(x) = C(f(x + 1) − f(x)) =
C∆f(x), and ∆(f(x) + g(x)) = (f(x+ 1) + g(x+ 1))− (f(x) + g(x)) = (f(x+ 1)− f(x)) +
(g(x+ 1)− g(x)) = ∆f(x) + ∆g(x).

2. Find all functions f(x) satisfying ∆(∆f(x)) = 3.

First, we find the functions g(x) satisfying ∆g(x) = 3. There are infinitely many, namely
g(x) = 3x1 + C, for any constant C. We now find the functions f(x) satisfying ∆f(x) =
g(x) = 3x1 + C. We get f(x) = 3

2x
2 + Cx1 +D.

3. Compute
∑n

i=1 i
5, for arbitrary n ∈ N.

We have

n∑
i=1

i5 =

n+1∑
1

x5δx =

n+1∑
1

x1 + 15x2 + 25x3 + 10x4 + x5δx, using our table for S(n, k).

We continue as 1
2x

2 + 5x3 + 25
4 x

4 + 2x5 + 1
6x

6|n+1
1 = 1

2(n+ 1)2 + 5(n+ 1)3 + 25
4 (n+ 1)4 + 2(n+

1)5 + 1
6(n+ 1)6 − 0.

4. Let c ∈ R. Compute ∆cx. Use this to find an anti-difference of cx, and hence the geometric
sum

∑b
a c

xδx (for c 6= 1).

We have ∆cx = cx+1 − cx = (c − 1)cx, so an anti-difference is cx

c−1 (for c 6= 1). Hence∑b
a c

xδx = cx

c−1 |
b
a = cb−ca

c−1 .

5. For c ∈ R and x ∈ N, compute ∆cx. Use this to find an anti-difference of (−2)k

k , and hence

the sum
∑n

k=2
(−2)k

k .

We have ∆cx = cx+1− cx = cx(c−x−1) = cx+2/(c−x). Hence ∆(−2)x = (−2)x+2/(−2−x),
and ∆(−2)x−2 = (−2)x/(−2−(x−2)) = −(−2)x/x. Taking negatives, we get ∆[−(−2)x−2] =
(−2)x/x. Hence the desired sum is −(−2)x−2|n+1

2 = −(−2)n−1 + (−2)0 = 1− (−2)n−1.

6. For k ∈ N, we define x−k = 1
(x+1)(x+2)···(x+k) . Prove that ∆x−k = −kx−k−1.

We calculate ∆x−k = (x+ 1)−k − x−k = 1
(x+2)(x+3)···(x+k+1) −

1
(x+1)(x+2)···(x+k) =

= x+1
(x+1)(x+2)(x+3)···(x+k+1) −

x+k+1
(x+1)(x+2)···(x+k)(x+k+1) = −k

(x+1)(x+2)···(x+k)(x+k+1) = −kx−k−1.

7. For x ∈ N, we define Hx = 1
1 + 1

2 + 1
3 + · · ·+ 1

x . Prove that ∆Hx = x−1.

We calculate ∆Hx = Hx+1−Hx = 1
1 + 1

2 + 1
3 +· · ·+ 1

x + 1
x+1−(11 + 1

2 + 1
3 +· · ·+ 1

x) = 1
x+1 = x−1.

8.
Prove that xm+n = xm(x−m)n for all integers m,n. (there are cases)

Case 1: m,n ≥ 0. (done in class)
xm(x−m)n = x(x− 1) · · · (x−m+ 1)(x−m)(x−m− 1) · · · (x−m− n+ 1) = xm+n.



Case 2: m,n < 0. xm(x−m)n = 1
(x+1)(x+2)···(x−m)

1
(x−m+1)(x−m+2)···(x−m−n) = xm+n.

Case 3: m ≥ 0 > n. xm(x − m)n = x(x − 1) · · · (x − m + 1) 1
(x−m+1)(x−m+2)···(x−m−n) =

(x−m+1)(x−m+2)···(x−m+m)
(x−m+1)(x−m+2)···(x−m−n) . Note that the terms in the numerator and denominator cancel,

until they run out. Ifm ≥ −n (i.e. m+n ≥ 0), then the result is (x−m−n+1) · · · (x−m+m) =
x(x− 1) · · · (x−m− n+ 1) = xm+n. If instead m < −n (i.e. m+ n < 0), then the result is

1
(x−m+m+1)(x−m+m+2)···(x−m−n) = 1

(x+1)(x+2)···(x−m−n) = xm+n.

Case 4: n ≥ 0 > m. xm(x−m)n = 1
(x+1)(x+2)···(x−m)(x−m)(x−m− 1) · · · (x−m− n+ 1) =

= (x−m)(x−m−1)···(x−m−n+1)
(x−m)(x−m−1)···(x−m+m+1) . Again the terms cancel nicely. If n ≥ −m, then the re-

sult is x(x − 1) · · · (x − m − n + 1) = xm+n. If instead n < −m, then the result is
1

(x−m−n)(x−m−n−1)···(x+1) = 1
(x+1)(x+2)···(x−m−n) = xm+n.

9. Calculate

n∑
0

x3xδx. Your answer should be a function of n.

We set u = x = x1,∆v = 3x. Note that ∆u = 1 and v = 1
2 · 3

x. We sum by parts, getting∑
x3xδx = x(12)3x −

∑ 1
23x+1δx = x(12)3x − 3

2

∑
3xδx = x(12)3x − 3

43x. Evaluating from 0 to

n we get n(12)3n − 3
43n − (0− 3

4) = 2n3n−3n+1+3
4 .

10. Calculate

n∑
0

x22xδx.

We set u = x2 = x2 + x1,∆v = 2x = v. Note that ∆u = 2x1 + 1. We sum by parts, get-
ting

∑
x22xδx = x22x −

∑
2x+1(2x1 + 1)δx = x22x − 4

∑
x12xδx − 2

∑
2xδx = x22x −

2x+1 − 4
∑
x12xδx. We sum by parts again, setting u = x = x1,∆v = 2x = v, with

∆u = 1. We get
∑
x12xδx = x2x −

∑
2x+1δx = x2x − 2x+1. Combining, we get

∑
x22xδx =

x22x − 2x+1 − 4(x2x − 2x+1) = x22x − x2x+2 + 3 · 2x+1. Evaluating from 0 to n we get
n22n − n2n+2 + 3 · 2n+1 − (0− 0 + 6) = n22n − n2n+2 + 3 · 2n+1 − 6.

11. Calculate

n∑
0

xHxδx. (hint: summation by parts and exercise 8)

We set u = Hx, ∆v = x = x1. This gives ∆u = x−1 and v = 1
2x

2. We sum by parts, getting∑
xHxδx = 1

2x
2Hx −

∑ 1
2(x + 1)2x−1δx. By Exercise 8, (x + 1)2x−1 = x1, so

∑
xHxδx =

1
2x

2Hx − 1
2

∑
x1δx = 1

2x
2Hx − 1

4x
2. Evaluating from 0 to n we get 1

2n
2Hn − 1

4n
2 − (0− 0).

12. Calculate
n∑
1

2x+ 1

x(x+ 1)
δx.

Solution 1: Breaking the fraction up, we get 2x+1
x(x+1) = 2

x+1 + 1
x(x+1) . Hence our sum is∑n

1 2x−1δx+
∑n

1 (x−1)−2δx =
∑n

1 2x−1δx+
∑n−1

0 x−2δx = 2Hx|n1 −x−1|n−1
0 = 2Hn−2H1−

(n− 1)−1 + 0−1 = 2Hn − 2− 1
(n−1)+1 + 1

0+1 = 2Hn − 1
n − 1.

Solution 2: By partial fractions, we see that 2x+1
x(x+1) = 1

x + 1
x+1 . Hence our sum is

∑n−1
k=1

1
k +

1
k+1 =

∑n−1
k=1

1
k +

∑n−1
k=1

1
k+1 = Hn−1 + (Hn − 1) = 2Hn − 1

n − 1.

Note: The original problem had a typo: it was missing δx, so full credit was given for
either the above solution, or for solving the very similar problem

∑n
x=1

2x+1
x(x+1) , with solution

Hn + (Hn+1 − 1) = 2Hn+1 − 1
n+1 − 1.


