MATH 579: Combinatorics

Homework 6: Due Oct. 16

Please solve these problems using the methods of difference calculus (as presented in class).

1. Prove the following properties for arbitrary constant C and functions $f(x), g(x)$.
(a) $\Delta C=0$;
(b) $\Delta(C f(x))=C \Delta f(x)$; and
(c) $\Delta(f(x)+g(x))=(\Delta f(x))+(\Delta g(x))$.
2. Find all functions $f(x)$ satisfying $\Delta(\Delta f(x))=3$.
3. Compute $\sum_{i=1}^{n} i^{5}$, for arbitrary $n \in \mathbb{N}$.
4. Let $c \in \mathbb{R}$. Compute Δc^{x}. Use this to find an anti-difference of c^{x}, and hence the geometric sum $\sum_{a}^{b} c^{x} \delta x($ for $c \neq 1)$.
5. For $c \in \mathbb{R}$ and $x \in \mathbb{N}$, compute $\Delta c^{\underline{\underline{x}}}$. Use this to find an anti-difference of $\frac{(-2)^{\underline{k}}}{k}$, and hence the sum $\sum_{k=2}^{n} \frac{(-2)^{k}}{k}$.
6. For $k \in \mathbb{N}$, we define $x^{-k}=\frac{1}{(x+1)(x+2) \cdots(x+k)}$. Prove that $\Delta x^{-k}=-k x^{-k-1}$.
7. For $x \in \mathbb{N}$, we define $H_{x}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{x}$. Henceforth we may consider H_{x} to be a basic function, in "closed form". Prove that $\Delta H_{x}=x \underline{-1}$.
8. Prove that $x^{\underline{m+n}}=x^{\underline{\underline{m}}}(x-m)^{\underline{n}}$ for all integers m, n. (there are cases)
9. Calculate $\sum_{0}^{n} x 3^{x} \delta x$. Your answer should be a function of n.
10. Calculate $\sum_{0}^{n} x^{2} 2^{x} \delta x$.
11. Calculate $\sum_{0}^{n} x H_{x} \delta x$. (hint: summation by parts and exercise 8)
12. Calculate $\sum_{1}^{n} \frac{2 k+1}{k(k+1)}$.
