MATH 579: Combinatorics Homowork 6: Duo Oct 16

Homework 6: Due Oct.16

Please solve these problems using the methods of difference calculus (as presented in class).

- 1. Prove the following properties for arbitrary constant C and functions f(x), g(x).
 - (a) $\Delta C = 0;$
 - (b) $\Delta(Cf(x)) = C\Delta f(x)$; and
 - (c) $\Delta(f(x) + g(x)) = (\Delta f(x)) + (\Delta g(x)).$
- 2. Find all functions f(x) satisfying $\Delta(\Delta f(x)) = 3$.
- 3. Compute $\sum_{i=1}^{n} i^5$, for arbitrary $n \in \mathbb{N}$.
- 4. Let $c \in \mathbb{R}$. Compute Δc^x . Use this to find an anti-difference of c^x , and hence the geometric sum $\sum_{a}^{b} c^x \delta x$ (for $c \neq 1$).
- 5. For $c \in \mathbb{R}$ and $x \in \mathbb{N}$, compute $\Delta c^{\underline{x}}$. Use this to find an anti-difference of $\frac{(-2)^{\underline{k}}}{k}$, and hence the sum $\sum_{k=2}^{n} \frac{(-2)^{\underline{k}}}{k}$.
- 6. For $k \in \mathbb{N}$, we define $x^{-k} = \frac{1}{(x+1)(x+2)\cdots(x+k)}$. Prove that $\Delta x^{-k} = -kx^{-k-1}$.
- 7. For $x \in \mathbb{N}$, we define $H_x = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{x}$. Henceforth we may consider H_x to be a basic function, in "closed form". Prove that $\Delta H_x = x^{-1}$.
- 8. Prove that $x^{\underline{m+n}} = x^{\underline{m}}(x-m)^{\underline{n}}$ for all integers m, n. (there are cases)
- 9. Calculate $\sum_{0}^{n} x 3^{x} \delta x$. Your answer should be a function of n.
- 10. Calculate $\sum_{0}^{n} x^2 2^x \delta x$.
- 11. Calculate $\sum_{0}^{n} x H_x \delta x$. (hint: summation by parts and exercise 8)
- 12. Calculate $\sum_{1}^{n} \frac{2k+1}{k(k+1)}$.