
MATH 579: Combinatorics
Homework 7 Solutions

1. a0 = a1 = 2, an = −2an−1 − an−2 (n ≥ 2)

The characteristic equation is x2 = −2x − 1, which has a double root of r = −1. Hence the general solution is
an = α1(−1)n + α2n(−1)n. Our initial conditions give 2 = a0 = α1(−1)0 + α20(−1)0 = A and 2 = a1 = α1(−1)1 +
α21(−1)1 = −α1 − α2. This has solution α1 = 2, α2 = −4, so our specific solution is an = 2(−1)n − 4n(−1)n =
2(−1)n(1− 2n).

2. a0 = 0, a1 = 1, an = 4an−2 (n ≥ 2)

The characteristic equation is x2 = 4, which has roots r1 = 2, r2 = −2. Hence the general solution is an =
α12n + α2(−2)n. Our initial conditions give 0 = a0 = α120 + α2(−2)0 = α1 + α2 and 1 = a1 = α121 + α2(−2)1 =
2α1 − 2α2. This has solution α1 = 0.25, α2 = −0.25, so our specific solution is an = (0.25)2n + (−0.25)(−2)n =
2−22n − (−2)−2(−2)n = 2n−2 − (−2)n−2.

3. a0 = 2, a1 = −4, a2 = 26, an = an−1 + 8an−2 − 12an−3 (n ≥ 3)

The characteristic equation is x3 = x2+8x−12, which has r1 = −3 as a single root, and r2 = 2 as a double root. Hence
the general solution is an = α1(−3)n+α22n+α3n2n. Our initial conditions give 2 = a0 = α1(−3)0+α220+α3020 =
α1 + α2, −4 = a1 = α1(−3)1 + α221 + α31 · 21 = −3α1 + 2α2 + 2α3, and 26 = a2 = α1(−3)2 + α222 + α32 · 22 =
9α1 + 4α2 + 8α3. This has solution α1 = 2, α2 = 0, α3 = 1, so our specific solution is an = 2(−3)n + n2n.

4. a0 = 0, a1 = 0, a2 = 0, an = 9an−1 − 27an−2 + 27an−3 (n ≥ 3)

The characteristic equation is x3 = 9x2 − 27x + 27, which has r = 3 as a triple root. Hence the general solution
is an = α13n + α2n3n + α3n

23n. Our initial conditions give 0 = a0 = α130 + α20 · 30 + α30230 = α1, 0 = a1 =
α131 + α21 · 31 + α31231 = 3α1 + 3α2 + 3α3, and 0 = a2 = α132 + α22 · 32 + α32232 = 9α1 + 18α2 + 36α3. This has
solution α1 = α2 = α3 = 0, so our specific solution is an = 0.

5. a0 = a1 = 0, an = an−1 + 2an−2 + 3 (n ≥ 2)

We start with homogeneous equation an = an−1 + 2an−2, which has characteristic equation x2 = x + 2 and
roots r1 = −1, r2 = 2. Hence the general solution is an = α1(−1)n + α22n. We now guess a solution to the
nonhomogeneous recurrence, a zeroth-degree polynomial (constant) β. If an = β solves the recurrence, then β =
β + 2β + 3. This has unique solution β = −1.5, so our general solution to the nonhomogeneous recurrence is
an = α1(−1)n + α22n − 1.5. Our initial conditions give 0 = a0 = α1(−1)0 + α220 − 1.5 = α1 + α2 − 1.5 and
0 = a1 = α1(−1)1 + α221 − 1.5 = −α1 + 2α2 − 1.5. This has solution α1 = 0.5, α2 = 1, so our specific solution is

an = 0.5(−1)n + 2n − 1.5 = (−1)n+2n+1−3
2 .

6. a0 = a1 = 0, an = an−1 + 2an−2 + n (n ≥ 2)

The homogeneous equation is the same as Problem 6, with general solution an = α1(−1)n + α22n. Now we
guess a first-degree polynomial solution βn + γ to the nonhomogeneous recurrence. Plugging in, we get βn + γ =
(β(n − 1) + γ) + 2(β(n − 2) + γ) + n = (3β + 1)n + (−5β + 3γ). Hence β = 3β + 1 and γ = −5β + 3γ, which has
solution β = −0.5, γ = −1.25. Thus our general solution to the nonhomogeneous recurrence is an = α1(−1)n +
α22n − 0.5n − 1.25. Our initial conditions give 0 = a0 = α1(−1)0 + α220 − 0.5 · 0 − 1.25 = α1 + α2 − 1.25 and
0 = a1 = α1(−1)1 + α221 − 0.5 · 1− 1.25 = −α1 + 2α2 − 1.75. This has solution α1 = 1

4 , α2 = 1. Hence our specific

solution is an = 1
4 (−1)n + 2n − 0.5n− 1.25 = (−1)n+2n+2−2n−5

4 .

7. a0 = a1 = 0, an = an−1 + 2an−2 + en (n ≥ 2)

The homogeneous equation is the same as Problem 6, with general solution an = α1(−1)n + α22n. Now we guess
a solution βen to the nonhomogeneous recurrence. Plugging in, we get βen = βen−1 + 2βen−2 + en. Cancelling

en−2, we get βe2 = βe + 2β + e2. This has unique solution β = e2

e2−e−2 ≈ 2.77. Thus our general solution to the

nonhomogeneous recurrence is an = α1(−1)n + α22n + βen. Our initial conditions give 0 = a0 = α1(−1)0 + α220 +

βe0 = α1 +α2 +β and 0 = a1 = α1(−1)1 +α221 +βe1 = −α1 + 2α2 +βe. This has solution α1 = e2

3+3e ≈ 0.66, α2 =
e2

6−3e ≈ −3.43. Hence our specific solution is an = (−1)ne2
3+3e + 2ne2

6−3e + en+2

e2−e−2 .

8. What is the maximum number of regions we can divide the plane into, using n lines?
We define the first few terms of sequence an via a0 = 1, a1 = 2, a2 = 4. Suppose now we have n − 1 lines already
placed, and add the next. If it crosses none of the existing lines (e.g. all are parallel), we add one new region. If it
crosses one of the existing lines, it adds one new region before the crossing, and one after the crossing. Since the new



line can cross at most n−1 lines, it can add at most (n−1)+1 = n new regions, so an = an−1+n. The homogeneous
equation has characteristic equation x = 1, with general solution an = α. We guess a second-degree polynomial
solution τn2 + βn + γ to the nonhomogeneous recurrence (the homogeneous solution overlaps, and no first-degree
polynomial works). Plugging in, we get τn2+βn+γ = τ(n−1)2+β(n−1)+γ+n = τn2+(−2τ+β+1)n+(τ−β+γ). It

turns out γ can be anything (since it’s absorbed into α), and τ = β = 0.5. Hence the general solution is an = α+n2+n
2 .

Our initial condition gives 1 = a0 = α+ 02+0
2 , so α = 1 and our specific solution is an = 1 + n2+n

2 = n2+n+2
2 .

9. Let an be the number of n-digit nonnegative integers in which no three consecutive digits are the same. Justify
that an+2 = 9an+1 + 9an, then find an.

Call integers that satisfy this condition ‘valid’. We divide valid integers with n+ 2 digits into two types: (A) those
whose last two digits are the same, and (B) those whose last two digits are different. To count type (A), we take
any valid integer with n digits, and append one of 00, 11, . . . , 99. However, one of these ten is forbidden (else we
would have an invalid integer). Hence there are 9an of type (A). To count type (B), we take any valid integer with
n+ 1 digits, and append one of 0, 1, . . . , 9. However, one of these ten is forbidden (else we wouldn’t be of type B).
Hence there are 9an+1 of type (B). Adding, we get the desired recurrence relation. Note that it’s only valid for
n ≥ 1, so we need to compute the two initial conditions a1 = 9, a2 = 90 separately. Our characteristic equation

is x2 = 9x + 9, with roots r1 = 9+3
√
13

2 , r2 = 9−3
√
13

2 . The general solution is an = α1r
n
1 + α2r

n
2 . Applying our

initial conditions, we get 9 = a1 = α1r1 + α2r2 and 90 = a2 = α1r
2
1 + α2r

2
2. These scary equations have solution

α1 = 1
2 + 3

2
√
13
, α2 = 1

2 −
3

2
√
13

. Hence the specific solution is just an = ( 1
2 + 3

2
√
13

)rn1 + ( 1
2 −

3
2
√
13

)rn2 .

10. Let an be the number of ways to color the squares of a 1× n chessboard using the colors red, white, and blue, so
that no two red squares are adjacent.

Call colorings that satisfy this condition ‘valid’. We divide valid colorings with n + 2 squares into two types: (A)
those whose last square isn’t red, and (B) those whose last square is red. To count type (A), we take any valid
coloring with n + 1 squares, and color the last square white or blue. Hence there are 2an+1 of type (A). To count
type (B), the last square is red, so the next-to-last square must be white or blue, and the remaining squares are a
valid coloring with n squares. Hence there are 2an of type (B). Combining, we get an+2 = 2an+1 + 2an. This is
valid for n ≥ 1, so we need to compute the initial conditions a1 = 3, a2 = 8 separately. Our characteristic equation
is x2 = 2x+ 2, with roots r1 = 1 +

√
3 and r2 = 1−

√
3. Our general solution is an = α1(1 +

√
3)n + α2(1−

√
3)n.

Applying our initial conditions, we get 3 = a1 = α1(1 +
√

3) +α2(1−
√

3) and 8 = α1(1 +
√

3)2 +α2(1−
√

3)2. This
has solution α1 = 1

2 + 1√
3
, α2 = 1

2 −
1√
3
. Hence our specific solution is an = ( 1

2 + 1√
3
)(1 +

√
3)n + ( 1

2 −
1√
3
)(1−

√
3)n.

11. Let an be the number of ways to color the squares of a 1× n chessboard using the colors red, white, and blue, so
that no red square is adjacent to a white square. Justify the relation an+2 = 2an+1 + an (for certain n), and then
find an.

Call colorings that satisfy this condition ‘valid’. We divide valid colorings with n + 2 squares into two types: (A)
those whose next-to-last square is blue, and (B) those whose next-to-last square isn’t blue. To count type (A), we
take any valid coloring of the first n squares, and any coloring of the last square. This gives 3an of type (A). To count
(B), we note that there are an valid colorings of n+ 1 squares, whose last square is blue, and an+1 valid colorings
of n+ 1 squares altogether. Hence there are an+1− an valid colorings of n+ 1 squares, whose last square isn’t blue.
For each of these, there are two ways of coloring the last square – either blue, or repeating the next-to-last square.
Hence there are 2(an+1−an) valid colorings of type (B). Combining, we get an+2 = 2(an+1−an)+3an = 2an+1+an,
valid for n ≥ 1. We also compute initial conditions a1 = 3, a2 = 7. We have characteristic equation x2 = 2x + 1,
with roots r1 = 1 +

√
2, r2 = 1−

√
2. Hence the general solution is an = α1(1 +

√
2)n + α2(1−

√
2)n. Applying our

initial conditions, we get 3 = a1 = α1(1 +
√

2)1 + α2(1−
√

2)1 and 7 = a2 = α1(1 +
√

2)2 + α2(1−
√

2)2. This has

solutions α1 = 1+
√
2

2 , α2 = 1−
√
2

2 . Hence our solution is an = (1+
√
2)n+1+(1−

√
2)n+1

2 .

12. Let an be the number of ways to color the squares of a 1× n chessboard using the colors red, white, and blue, so
that the specific sequence red-white-blue does not occur. Find a recurrence that this sequence satisfies.

Call colorings that satisfy this condition ‘valid’; we count valid colorings of length n + 3. We might start with a
valid coloring of length n + 2, and then append any of 3 colors. This gives 3an+2, but unfortunately some invalid
colorings are included among these. The only way the coloring could be invalid is if the last three colors are
exactly red-white-blue (no earlier red-white-blue could have occurred since we started with a valid coloring before
appending blue). How many of these invalid ones snuck in? Exactly an of them – every valid coloring of length n,
to be followed by red-white in our valid coloring of length n+ 2. Hence the sequence satisfies the recurrence relation
an+3 = 3an+2 − an, for all n ≥ 1. We also need initial conditions a1 = 3, a2 = 9, a3 = 26. We could finish this
problem and solve the recurrence using our methods, except that the roots are really ugly.


