MATH 579: Combinatorics

Homework 8: Due Nov. 6

1. Find a closed form for the generating function for the sequence $1,-1,1,-1,1,-1, \ldots$.
2. Find a closed form for the generating function for the sequence $0,0,0,1,-1,1,-1,1,-1, \ldots$.
3. Find a closed form for the generating function $\sum_{k \geq 0}(7 k-2) x^{k}$.
4. Find a closed form for the generating function for the sequence $0,1,4,9,16,25, \ldots$.
5. Find a closed form for the generating function for the Fibonacci numbers. Note: No need to find a closed form for the sequence.
6. Solve the recurrence given by $a_{0}=0, a_{1}=1, a_{n}=4 a_{n-2}(n \geq 2)$ using generating functions.
7. Solve the recurrence given by $a_{0}=a_{1}=2, a_{n}=-2 a_{n-1}-a_{n-2}(n \geq 2)$ using generating functions.
8. Solve the recurrence given by $a_{0}=a_{1}=0, a_{n}=a_{n-1}+2 a_{n-2}+3(n \geq 2)$ using generating functions.
9. Count the number of solutions to $a+b+c=n$ in nonnegative integers a, b, c, such that a is a multiple of $3, b \leq 2$, and $c \geq 1$. Find a closed form for the sequence, and compute explicitly the value for $n=20$.
10. Count the number of solutions to $a+b+c=n$ in nonnegative integers a, b, c, such that a is even, $b \leq 4$, and $c \geq 1$. Find a closed form for the sequence, and compute explicitly the value for $n=20$.
11. Find the generating function for how many ways there are of making n cents in change, out of pennies, nickels, dimes, and quarters. Then compute explicitly the value for $n=111$. Note: No need to find a closed form for the sequence, use a computer to answer the specific question you have.
12. Consider the recurrence given by $c_{0}=1, c_{n+1}=\sum_{i=0}^{n} c_{i}(n \geq 0)$. Find a generating function and a closed form for the sequence. Hint: Consider $\frac{C(x)}{1-x}$.
